Strong Dual for Conic Mixed-Integer Programs∗
نویسندگان
چکیده
Mixed-integer conic programming is a generalization of mixed-integer linear programming. In this paper, we present an extension of the duality theory for mixed-integer linear programming (see [4], [11]) to the case of mixed-integer conic programming. In particular, we construct a subadditive dual for mixed-integer conic programming problems. Under a simple condition on the primal problem, we are able to prove strong duality.
منابع مشابه
Forthcoming in Mathematical Programming CONIC MIXED-INTEGER ROUNDING CUTS
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures ...
متن کاملConic mixed-integer rounding cuts
A conic integer program is an integer programming problem with conic constraints.Manyproblems infinance, engineering, statistical learning, andprobabilistic optimization aremodeled using conic constraints. Herewe studymixed-integer sets definedby second-order conic constraints.We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second...
متن کاملLifting for conic mixed-integer programming
Lifting is a procedure for deriving valid inequalities formixed-integer sets from valid inequalities for suitable restrictions of those sets. Lifting has been shown to be very effective in developing strong valid inequalities for linear integer programming and it has been successfully used to solve such problems with branch-and-cut algorithms. Here we generalize the theory of lifting to conic i...
متن کاملCuts for Conic Mixed-Integer Programming
A conic integer program is an integer programming problem with conic constraints. Conic integer programming has important applications in finance, engineering, statistical learning, and probabilistic integer programming. Here we study mixed-integer sets defined by second-order conic constraints. We describe general-purpose conic mixed-integer rounding cuts based on polyhedral conic substructure...
متن کاملFeasibility study of presenting a dynamic stochastic model based on mixed integer second-order conic programming to solve optimal distribution network reconfiguration in the presence of resources and demand-side management
Nowadays, with the use of devices such as fossil distributed generation and renewable energy resources and energy storage systems that are operated at the level of distribution networks, the problem of optimal reconfiguration has faced major challenges, so any change in the power of this resources can have different results in reconfiguration. Similarly, load changes during the day can lead to ...
متن کامل